| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430 |
- // Copyright 2011 The Snappy-Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package snappy
- import (
- "encoding/binary"
- "errors"
- "io"
- )
- func load32(b []byte, i int) uint32 {
- b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
- return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
- }
- func load64(b []byte, i int) uint64 {
- b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
- return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
- uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
- }
- // Encode returns the encoded form of src. The returned slice may be a sub-
- // slice of dst if dst was large enough to hold the entire encoded block.
- // Otherwise, a newly allocated slice will be returned.
- //
- // The dst and src must not overlap. It is valid to pass a nil dst.
- func Encode(dst, src []byte) []byte {
- if n := MaxEncodedLen(len(src)); n < 0 {
- panic(ErrTooLarge)
- } else if len(dst) < n {
- dst = make([]byte, n)
- }
- // The block starts with the varint-encoded length of the decompressed bytes.
- d := binary.PutUvarint(dst, uint64(len(src)))
- for len(src) > 0 {
- p := src
- src = nil
- if len(p) > maxBlockSize {
- p, src = p[:maxBlockSize], p[maxBlockSize:]
- }
- if len(p) < minNonLiteralBlockSize {
- d += emitLiteral(dst[d:], p)
- } else {
- d += encodeBlock(dst[d:], p)
- }
- }
- return dst[:d]
- }
- // inputMargin is the minimum number of extra input bytes to keep, inside
- // encodeBlock's inner loop. On some architectures, this margin lets us
- // implement a fast path for emitLiteral, where the copy of short (<= 16 byte)
- // literals can be implemented as a single load to and store from a 16-byte
- // register. That literal's actual length can be as short as 1 byte, so this
- // can copy up to 15 bytes too much, but that's OK as subsequent iterations of
- // the encoding loop will fix up the copy overrun, and this inputMargin ensures
- // that we don't overrun the dst and src buffers.
- //
- // TODO: implement this fast path.
- const inputMargin = 16 - 1
- // minNonLiteralBlockSize is the minimum size of the input to encodeBlock that
- // could be encoded with a copy tag. This is the minimum with respect to the
- // algorithm used by encodeBlock, not a minimum enforced by the file format.
- //
- // The encoded output must start with at least a 1 byte literal, as there are
- // no previous bytes to copy. A minimal (1 byte) copy after that, generated
- // from an emitCopy call in encodeBlock's main loop, would require at least
- // another inputMargin bytes, for the reason above: we want any emitLiteral
- // calls inside encodeBlock's main loop to use the fast path if possible, which
- // requires being able to overrun by inputMargin bytes. Thus,
- // minNonLiteralBlockSize equals 1 + 1 + inputMargin.
- //
- // The C++ code doesn't use this exact threshold, but it could, as discussed at
- // https://groups.google.com/d/topic/snappy-compression/oGbhsdIJSJ8/discussion
- // The difference between Go (2+inputMargin) and C++ (inputMargin) is purely an
- // optimization. It should not affect the encoded form. This is tested by
- // TestSameEncodingAsCppShortCopies.
- const minNonLiteralBlockSize = 1 + 1 + inputMargin
- func hash(u, shift uint32) uint32 {
- return (u * 0x1e35a7bd) >> shift
- }
- // encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
- // assumes that the varint-encoded length of the decompressed bytes has already
- // been written.
- //
- // It also assumes that:
- // len(dst) >= MaxEncodedLen(len(src)) &&
- // minNonLiteralBlockSize <= len(src) && len(src) <= maxBlockSize
- func encodeBlock(dst, src []byte) (d int) {
- // Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive.
- // The table element type is uint16, as s < sLimit and sLimit < len(src)
- // and len(src) <= maxBlockSize and maxBlockSize == 65536.
- const (
- maxTableSize = 1 << 14
- // tableMask is redundant, but helps the compiler eliminate bounds
- // checks.
- tableMask = maxTableSize - 1
- )
- shift := uint32(32 - 8)
- for tableSize := 1 << 8; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
- shift--
- }
- // In Go, all array elements are zero-initialized, so there is no advantage
- // to a smaller tableSize per se. However, it matches the C++ algorithm,
- // and in the asm versions of this code, we can get away with zeroing only
- // the first tableSize elements.
- var table [maxTableSize]uint16
- // sLimit is when to stop looking for offset/length copies. The inputMargin
- // lets us use a fast path for emitLiteral in the main loop, while we are
- // looking for copies.
- sLimit := len(src) - inputMargin
- // nextEmit is where in src the next emitLiteral should start from.
- nextEmit := 0
- // The encoded form must start with a literal, as there are no previous
- // bytes to copy, so we start looking for hash matches at s == 1.
- s := 1
- nextHash := hash(load32(src, s), shift)
- for {
- // Copied from the C++ snappy implementation:
- //
- // Heuristic match skipping: If 32 bytes are scanned with no matches
- // found, start looking only at every other byte. If 32 more bytes are
- // scanned (or skipped), look at every third byte, etc.. When a match
- // is found, immediately go back to looking at every byte. This is a
- // small loss (~5% performance, ~0.1% density) for compressible data
- // due to more bookkeeping, but for non-compressible data (such as
- // JPEG) it's a huge win since the compressor quickly "realizes" the
- // data is incompressible and doesn't bother looking for matches
- // everywhere.
- //
- // The "skip" variable keeps track of how many bytes there are since
- // the last match; dividing it by 32 (ie. right-shifting by five) gives
- // the number of bytes to move ahead for each iteration.
- skip := 32
- nextS := s
- candidate := 0
- for {
- s = nextS
- bytesBetweenHashLookups := skip >> 5
- nextS = s + bytesBetweenHashLookups
- skip += bytesBetweenHashLookups
- if nextS > sLimit {
- goto emitRemainder
- }
- candidate = int(table[nextHash&tableMask])
- table[nextHash&tableMask] = uint16(s)
- nextHash = hash(load32(src, nextS), shift)
- if load32(src, s) == load32(src, candidate) {
- break
- }
- }
- // A 4-byte match has been found. We'll later see if more than 4 bytes
- // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
- // them as literal bytes.
- d += emitLiteral(dst[d:], src[nextEmit:s])
- // Call emitCopy, and then see if another emitCopy could be our next
- // move. Repeat until we find no match for the input immediately after
- // what was consumed by the last emitCopy call.
- //
- // If we exit this loop normally then we need to call emitLiteral next,
- // though we don't yet know how big the literal will be. We handle that
- // by proceeding to the next iteration of the main loop. We also can
- // exit this loop via goto if we get close to exhausting the input.
- for {
- // Invariant: we have a 4-byte match at s, and no need to emit any
- // literal bytes prior to s.
- base := s
- // Extend the 4-byte match as long as possible.
- s = extendMatch(src, candidate+4, s+4)
- d += emitCopy(dst[d:], base-candidate, s-base)
- nextEmit = s
- if s >= sLimit {
- goto emitRemainder
- }
- // We could immediately start working at s now, but to improve
- // compression we first update the hash table at s-1 and at s. If
- // another emitCopy is not our next move, also calculate nextHash
- // at s+1. At least on GOARCH=amd64, these three hash calculations
- // are faster as one load64 call (with some shifts) instead of
- // three load32 calls.
- x := load64(src, s-1)
- prevHash := hash(uint32(x>>0), shift)
- table[prevHash&tableMask] = uint16(s - 1)
- currHash := hash(uint32(x>>8), shift)
- candidate = int(table[currHash&tableMask])
- table[currHash&tableMask] = uint16(s)
- if uint32(x>>8) != load32(src, candidate) {
- nextHash = hash(uint32(x>>16), shift)
- s++
- break
- }
- }
- }
- emitRemainder:
- if nextEmit < len(src) {
- d += emitLiteral(dst[d:], src[nextEmit:])
- }
- return d
- }
- // MaxEncodedLen returns the maximum length of a snappy block, given its
- // uncompressed length.
- //
- // It will return a negative value if srcLen is too large to encode.
- func MaxEncodedLen(srcLen int) int {
- n := uint64(srcLen)
- if n > 0xffffffff {
- return -1
- }
- // Compressed data can be defined as:
- // compressed := item* literal*
- // item := literal* copy
- //
- // The trailing literal sequence has a space blowup of at most 62/60
- // since a literal of length 60 needs one tag byte + one extra byte
- // for length information.
- //
- // Item blowup is trickier to measure. Suppose the "copy" op copies
- // 4 bytes of data. Because of a special check in the encoding code,
- // we produce a 4-byte copy only if the offset is < 65536. Therefore
- // the copy op takes 3 bytes to encode, and this type of item leads
- // to at most the 62/60 blowup for representing literals.
- //
- // Suppose the "copy" op copies 5 bytes of data. If the offset is big
- // enough, it will take 5 bytes to encode the copy op. Therefore the
- // worst case here is a one-byte literal followed by a five-byte copy.
- // That is, 6 bytes of input turn into 7 bytes of "compressed" data.
- //
- // This last factor dominates the blowup, so the final estimate is:
- n = 32 + n + n/6
- if n > 0xffffffff {
- return -1
- }
- return int(n)
- }
- var errClosed = errors.New("snappy: Writer is closed")
- // NewWriter returns a new Writer that compresses to w.
- //
- // The Writer returned does not buffer writes. There is no need to Flush or
- // Close such a Writer.
- //
- // Deprecated: the Writer returned is not suitable for many small writes, only
- // for few large writes. Use NewBufferedWriter instead, which is efficient
- // regardless of the frequency and shape of the writes, and remember to Close
- // that Writer when done.
- func NewWriter(w io.Writer) *Writer {
- return &Writer{
- w: w,
- obuf: make([]byte, obufLen),
- }
- }
- // NewBufferedWriter returns a new Writer that compresses to w, using the
- // framing format described at
- // https://github.com/google/snappy/blob/master/framing_format.txt
- //
- // The Writer returned buffers writes. Users must call Close to guarantee all
- // data has been forwarded to the underlying io.Writer. They may also call
- // Flush zero or more times before calling Close.
- func NewBufferedWriter(w io.Writer) *Writer {
- return &Writer{
- w: w,
- ibuf: make([]byte, 0, maxBlockSize),
- obuf: make([]byte, obufLen),
- }
- }
- // Writer is an io.Writer than can write Snappy-compressed bytes.
- type Writer struct {
- w io.Writer
- err error
- // ibuf is a buffer for the incoming (uncompressed) bytes.
- //
- // Its use is optional. For backwards compatibility, Writers created by the
- // NewWriter function have ibuf == nil, do not buffer incoming bytes, and
- // therefore do not need to be Flush'ed or Close'd.
- ibuf []byte
- // obuf is a buffer for the outgoing (compressed) bytes.
- obuf []byte
- // wroteStreamHeader is whether we have written the stream header.
- wroteStreamHeader bool
- }
- // Reset discards the writer's state and switches the Snappy writer to write to
- // w. This permits reusing a Writer rather than allocating a new one.
- func (w *Writer) Reset(writer io.Writer) {
- w.w = writer
- w.err = nil
- if w.ibuf != nil {
- w.ibuf = w.ibuf[:0]
- }
- w.wroteStreamHeader = false
- }
- // Write satisfies the io.Writer interface.
- func (w *Writer) Write(p []byte) (nRet int, errRet error) {
- if w.ibuf == nil {
- // Do not buffer incoming bytes. This does not perform or compress well
- // if the caller of Writer.Write writes many small slices. This
- // behavior is therefore deprecated, but still supported for backwards
- // compatibility with code that doesn't explicitly Flush or Close.
- return w.write(p)
- }
- // The remainder of this method is based on bufio.Writer.Write from the
- // standard library.
- for len(p) > (cap(w.ibuf)-len(w.ibuf)) && w.err == nil {
- var n int
- if len(w.ibuf) == 0 {
- // Large write, empty buffer.
- // Write directly from p to avoid copy.
- n, _ = w.write(p)
- } else {
- n = copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
- w.ibuf = w.ibuf[:len(w.ibuf)+n]
- w.Flush()
- }
- nRet += n
- p = p[n:]
- }
- if w.err != nil {
- return nRet, w.err
- }
- n := copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
- w.ibuf = w.ibuf[:len(w.ibuf)+n]
- nRet += n
- return nRet, nil
- }
- func (w *Writer) write(p []byte) (nRet int, errRet error) {
- if w.err != nil {
- return 0, w.err
- }
- for len(p) > 0 {
- obufStart := len(magicChunk)
- if !w.wroteStreamHeader {
- w.wroteStreamHeader = true
- copy(w.obuf, magicChunk)
- obufStart = 0
- }
- var uncompressed []byte
- if len(p) > maxBlockSize {
- uncompressed, p = p[:maxBlockSize], p[maxBlockSize:]
- } else {
- uncompressed, p = p, nil
- }
- checksum := crc(uncompressed)
- // Compress the buffer, discarding the result if the improvement
- // isn't at least 12.5%.
- compressed := Encode(w.obuf[obufHeaderLen:], uncompressed)
- chunkType := uint8(chunkTypeCompressedData)
- chunkLen := 4 + len(compressed)
- obufEnd := obufHeaderLen + len(compressed)
- if len(compressed) >= len(uncompressed)-len(uncompressed)/8 {
- chunkType = chunkTypeUncompressedData
- chunkLen = 4 + len(uncompressed)
- obufEnd = obufHeaderLen
- }
- // Fill in the per-chunk header that comes before the body.
- w.obuf[len(magicChunk)+0] = chunkType
- w.obuf[len(magicChunk)+1] = uint8(chunkLen >> 0)
- w.obuf[len(magicChunk)+2] = uint8(chunkLen >> 8)
- w.obuf[len(magicChunk)+3] = uint8(chunkLen >> 16)
- w.obuf[len(magicChunk)+4] = uint8(checksum >> 0)
- w.obuf[len(magicChunk)+5] = uint8(checksum >> 8)
- w.obuf[len(magicChunk)+6] = uint8(checksum >> 16)
- w.obuf[len(magicChunk)+7] = uint8(checksum >> 24)
- if _, err := w.w.Write(w.obuf[obufStart:obufEnd]); err != nil {
- w.err = err
- return nRet, err
- }
- if chunkType == chunkTypeUncompressedData {
- if _, err := w.w.Write(uncompressed); err != nil {
- w.err = err
- return nRet, err
- }
- }
- nRet += len(uncompressed)
- }
- return nRet, nil
- }
- // Flush flushes the Writer to its underlying io.Writer.
- func (w *Writer) Flush() error {
- if w.err != nil {
- return w.err
- }
- if len(w.ibuf) == 0 {
- return nil
- }
- w.write(w.ibuf)
- w.ibuf = w.ibuf[:0]
- return w.err
- }
- // Close calls Flush and then closes the Writer.
- func (w *Writer) Close() error {
- w.Flush()
- ret := w.err
- if w.err == nil {
- w.err = errClosed
- }
- return ret
- }
|