| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315 |
- // Copyright (c) 2012 The gocql Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- // The uuid package can be used to generate and parse universally unique
- // identifiers, a standardized format in the form of a 128 bit number.
- //
- // http://tools.ietf.org/html/rfc4122
- package gocql
- import (
- "crypto/rand"
- "errors"
- "fmt"
- "io"
- "net"
- "strings"
- "sync/atomic"
- "time"
- )
- type UUID [16]byte
- var hardwareAddr []byte
- var clockSeq uint32
- const (
- VariantNCSCompat = 0
- VariantIETF = 2
- VariantMicrosoft = 6
- VariantFuture = 7
- )
- func init() {
- if interfaces, err := net.Interfaces(); err == nil {
- for _, i := range interfaces {
- if i.Flags&net.FlagLoopback == 0 && len(i.HardwareAddr) > 0 {
- hardwareAddr = i.HardwareAddr
- break
- }
- }
- }
- if hardwareAddr == nil {
- // If we failed to obtain the MAC address of the current computer,
- // we will use a randomly generated 6 byte sequence instead and set
- // the multicast bit as recommended in RFC 4122.
- hardwareAddr = make([]byte, 6)
- _, err := io.ReadFull(rand.Reader, hardwareAddr)
- if err != nil {
- panic(err)
- }
- hardwareAddr[0] = hardwareAddr[0] | 0x01
- }
- // initialize the clock sequence with a random number
- var clockSeqRand [2]byte
- io.ReadFull(rand.Reader, clockSeqRand[:])
- clockSeq = uint32(clockSeqRand[1])<<8 | uint32(clockSeqRand[0])
- }
- // ParseUUID parses a 32 digit hexadecimal number (that might contain hypens)
- // representing an UUID.
- func ParseUUID(input string) (UUID, error) {
- var u UUID
- j := 0
- for _, r := range input {
- switch {
- case r == '-' && j&1 == 0:
- continue
- case r >= '0' && r <= '9' && j < 32:
- u[j/2] |= byte(r-'0') << uint(4-j&1*4)
- case r >= 'a' && r <= 'f' && j < 32:
- u[j/2] |= byte(r-'a'+10) << uint(4-j&1*4)
- case r >= 'A' && r <= 'F' && j < 32:
- u[j/2] |= byte(r-'A'+10) << uint(4-j&1*4)
- default:
- return UUID{}, fmt.Errorf("invalid UUID %q", input)
- }
- j += 1
- }
- if j != 32 {
- return UUID{}, fmt.Errorf("invalid UUID %q", input)
- }
- return u, nil
- }
- // UUIDFromBytes converts a raw byte slice to an UUID.
- func UUIDFromBytes(input []byte) (UUID, error) {
- var u UUID
- if len(input) != 16 {
- return u, errors.New("UUIDs must be exactly 16 bytes long")
- }
- copy(u[:], input)
- return u, nil
- }
- // RandomUUID generates a totally random UUID (version 4) as described in
- // RFC 4122.
- func RandomUUID() (UUID, error) {
- var u UUID
- _, err := io.ReadFull(rand.Reader, u[:])
- if err != nil {
- return u, err
- }
- u[6] &= 0x0F // clear version
- u[6] |= 0x40 // set version to 4 (random uuid)
- u[8] &= 0x3F // clear variant
- u[8] |= 0x80 // set to IETF variant
- return u, nil
- }
- var timeBase = time.Date(1582, time.October, 15, 0, 0, 0, 0, time.UTC).Unix()
- // getTimestamp converts time to UUID (version 1) timestamp.
- // It must be an interval of 100-nanoseconds since timeBase.
- func getTimestamp(t time.Time) int64 {
- utcTime := t.In(time.UTC)
- ts := int64(utcTime.Unix()-timeBase)*10000000 + int64(utcTime.Nanosecond()/100)
- return ts
- }
- // TimeUUID generates a new time based UUID (version 1) using the current
- // time as the timestamp.
- func TimeUUID() UUID {
- return UUIDFromTime(time.Now())
- }
- // The min and max clock values for a UUID.
- //
- // Cassandra's TimeUUIDType compares the lsb parts as signed byte arrays.
- // Thus, the min value for each byte is -128 and the max is +127.
- const (
- minClock = 0x8080
- maxClock = 0x7f7f
- )
- // The min and max node values for a UUID.
- //
- // See explanation about Cassandra's TimeUUIDType comparison logic above.
- var (
- minNode = []byte{0x80, 0x80, 0x80, 0x80, 0x80, 0x80}
- maxNode = []byte{0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f}
- )
- // MinTimeUUID generates a "fake" time based UUID (version 1) which will be
- // the smallest possible UUID generated for the provided timestamp.
- //
- // UUIDs generated by this function are not unique and are mostly suitable only
- // in queries to select a time range of a Cassandra's TimeUUID column.
- func MinTimeUUID(t time.Time) UUID {
- return TimeUUIDWith(getTimestamp(t), minClock, minNode)
- }
- // MaxTimeUUID generates a "fake" time based UUID (version 1) which will be
- // the biggest possible UUID generated for the provided timestamp.
- //
- // UUIDs generated by this function are not unique and are mostly suitable only
- // in queries to select a time range of a Cassandra's TimeUUID column.
- func MaxTimeUUID(t time.Time) UUID {
- return TimeUUIDWith(getTimestamp(t), maxClock, maxNode)
- }
- // UUIDFromTime generates a new time based UUID (version 1) as described in
- // RFC 4122. This UUID contains the MAC address of the node that generated
- // the UUID, the given timestamp and a sequence number.
- func UUIDFromTime(t time.Time) UUID {
- ts := getTimestamp(t)
- clock := atomic.AddUint32(&clockSeq, 1)
- return TimeUUIDWith(ts, clock, hardwareAddr)
- }
- // TimeUUIDWith generates a new time based UUID (version 1) as described in
- // RFC4122 with given parameters. t is the number of 100's of nanoseconds
- // since 15 Oct 1582 (60bits). clock is the number of clock sequence (14bits).
- // node is a slice to gurarantee the uniqueness of the UUID (up to 6bytes).
- // Note: calling this function does not increment the static clock sequence.
- func TimeUUIDWith(t int64, clock uint32, node []byte) UUID {
- var u UUID
- u[0], u[1], u[2], u[3] = byte(t>>24), byte(t>>16), byte(t>>8), byte(t)
- u[4], u[5] = byte(t>>40), byte(t>>32)
- u[6], u[7] = byte(t>>56)&0x0F, byte(t>>48)
- u[8] = byte(clock >> 8)
- u[9] = byte(clock)
- copy(u[10:], node)
- u[6] |= 0x10 // set version to 1 (time based uuid)
- u[8] &= 0x3F // clear variant
- u[8] |= 0x80 // set to IETF variant
- return u
- }
- // String returns the UUID in it's canonical form, a 32 digit hexadecimal
- // number in the form of xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx.
- func (u UUID) String() string {
- var offsets = [...]int{0, 2, 4, 6, 9, 11, 14, 16, 19, 21, 24, 26, 28, 30, 32, 34}
- const hexString = "0123456789abcdef"
- r := make([]byte, 36)
- for i, b := range u {
- r[offsets[i]] = hexString[b>>4]
- r[offsets[i]+1] = hexString[b&0xF]
- }
- r[8] = '-'
- r[13] = '-'
- r[18] = '-'
- r[23] = '-'
- return string(r)
- }
- // Bytes returns the raw byte slice for this UUID. A UUID is always 128 bits
- // (16 bytes) long.
- func (u UUID) Bytes() []byte {
- return u[:]
- }
- // Variant returns the variant of this UUID. This package will only generate
- // UUIDs in the IETF variant.
- func (u UUID) Variant() int {
- x := u[8]
- if x&0x80 == 0 {
- return VariantNCSCompat
- }
- if x&0x40 == 0 {
- return VariantIETF
- }
- if x&0x20 == 0 {
- return VariantMicrosoft
- }
- return VariantFuture
- }
- // Version extracts the version of this UUID variant. The RFC 4122 describes
- // five kinds of UUIDs.
- func (u UUID) Version() int {
- return int(u[6] & 0xF0 >> 4)
- }
- // Node extracts the MAC address of the node who generated this UUID. It will
- // return nil if the UUID is not a time based UUID (version 1).
- func (u UUID) Node() []byte {
- if u.Version() != 1 {
- return nil
- }
- return u[10:]
- }
- // Clock extracts the clock sequence of this UUID. It will return zero if the
- // UUID is not a time based UUID (version 1).
- func (u UUID) Clock() uint32 {
- if u.Version() != 1 {
- return 0
- }
- // Clock sequence is the lower 14bits of u[8:10]
- return uint32(u[8]&0x3F)<<8 | uint32(u[9])
- }
- // Timestamp extracts the timestamp information from a time based UUID
- // (version 1).
- func (u UUID) Timestamp() int64 {
- if u.Version() != 1 {
- return 0
- }
- return int64(uint64(u[0])<<24|uint64(u[1])<<16|
- uint64(u[2])<<8|uint64(u[3])) +
- int64(uint64(u[4])<<40|uint64(u[5])<<32) +
- int64(uint64(u[6]&0x0F)<<56|uint64(u[7])<<48)
- }
- // Time is like Timestamp, except that it returns a time.Time.
- func (u UUID) Time() time.Time {
- if u.Version() != 1 {
- return time.Time{}
- }
- t := u.Timestamp()
- sec := t / 1e7
- nsec := (t % 1e7) * 100
- return time.Unix(sec+timeBase, nsec).UTC()
- }
- // Marshaling for JSON
- func (u UUID) MarshalJSON() ([]byte, error) {
- return []byte(`"` + u.String() + `"`), nil
- }
- // Unmarshaling for JSON
- func (u *UUID) UnmarshalJSON(data []byte) error {
- str := strings.Trim(string(data), `"`)
- if len(str) > 36 {
- return fmt.Errorf("invalid JSON UUID %s", str)
- }
- parsed, err := ParseUUID(str)
- if err == nil {
- copy(u[:], parsed[:])
- }
- return err
- }
- func (u UUID) MarshalText() ([]byte, error) {
- return []byte(u.String()), nil
- }
- func (u *UUID) UnmarshalText(text []byte) (err error) {
- *u, err = ParseUUID(string(text))
- return
- }
|