// Copyright (c) 2012 The gocql Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gocql import ( "bytes" "encoding/binary" "errors" "fmt" "io" "strings" "sync" "time" "unicode" "github.com/gocql/gocql/internal/lru" ) // Session is the interface used by users to interact with the database. // // It's safe for concurrent use by multiple goroutines and a typical usage // scenario is to have one global session object to interact with the // whole Cassandra cluster. // // This type extends the Node interface by adding a convinient query builder // and automatically sets a default consinstency level on all operations // that do not have a consistency level set. type Session struct { pool *policyConnPool cons Consistency pageSize int prefetch float64 routingKeyInfoCache routingKeyInfoLRU schemaDescriber *schemaDescriber trace Tracer hostSource *ringDescriber mu sync.RWMutex hostFilter HostFilter control *controlConn // ring metadata hosts []HostInfo cfg ClusterConfig closeMu sync.RWMutex isClosed bool } // NewSession wraps an existing Node. func NewSession(cfg ClusterConfig) (*Session, error) { //Check that hosts in the ClusterConfig is not empty if len(cfg.Hosts) < 1 { return nil, ErrNoHosts } //Adjust the size of the prepared statements cache to match the latest configuration stmtsLRU.Lock() initStmtsLRU(cfg.MaxPreparedStmts) stmtsLRU.Unlock() s := &Session{ cons: cfg.Consistency, prefetch: 0.25, cfg: cfg, pageSize: cfg.PageSize, } s.routingKeyInfoCache.lru = lru.New(cfg.MaxRoutingKeyInfo) // I think it might be a good idea to simplify this and make it always discover // hosts, maybe with more filters. s.hostSource = &ringDescriber{ session: s, closeChan: make(chan bool), } if !cfg.disableControlConn { s.control = createControlConn(s) if err := s.control.connect(cfg.Hosts); err != nil { return nil, err } // need to setup host source to check for broadcast_address in system.local localHasRPCAddr, _ := checkSystemLocal(s.control) s.hostSource.localHasRpcAddr = localHasRPCAddr hosts, _, err := s.hostSource.GetHosts() if err != nil { s.control.close() return nil, err } pool, err := cfg.PoolConfig.buildPool(s) if err != nil { return nil, err } s.pool = pool // TODO(zariel): this should be used to create initial metadata s.pool.SetHosts(hosts) } else { // TODO(zariel): remove branch for creating pools pool, err := cfg.PoolConfig.buildPool(s) if err != nil { return nil, err } s.pool = pool } // TODO(zariel): we probably dont need this any more as we verify that we // can connect to one of the endpoints supplied by using the control conn. // See if there are any connections in the pool if s.pool.Size() == 0 { s.Close() return nil, ErrNoConnectionsStarted } return s, nil } // SetConsistency sets the default consistency level for this session. This // setting can also be changed on a per-query basis and the default value // is Quorum. func (s *Session) SetConsistency(cons Consistency) { s.mu.Lock() s.cons = cons s.mu.Unlock() } // SetPageSize sets the default page size for this session. A value <= 0 will // disable paging. This setting can also be changed on a per-query basis. func (s *Session) SetPageSize(n int) { s.mu.Lock() s.pageSize = n s.mu.Unlock() } // SetPrefetch sets the default threshold for pre-fetching new pages. If // there are only p*pageSize rows remaining, the next page will be requested // automatically. This value can also be changed on a per-query basis and // the default value is 0.25. func (s *Session) SetPrefetch(p float64) { s.mu.Lock() s.prefetch = p s.mu.Unlock() } // SetTrace sets the default tracer for this session. This setting can also // be changed on a per-query basis. func (s *Session) SetTrace(trace Tracer) { s.mu.Lock() s.trace = trace s.mu.Unlock() } // Query generates a new query object for interacting with the database. // Further details of the query may be tweaked using the resulting query // value before the query is executed. Query is automatically prepared // if it has not previously been executed. func (s *Session) Query(stmt string, values ...interface{}) *Query { s.mu.RLock() qry := &Query{stmt: stmt, values: values, cons: s.cons, session: s, pageSize: s.pageSize, trace: s.trace, prefetch: s.prefetch, rt: s.cfg.RetryPolicy, serialCons: s.cfg.SerialConsistency, defaultTimestamp: s.cfg.DefaultTimestamp, } s.mu.RUnlock() return qry } type QueryInfo struct { Id []byte Args []ColumnInfo Rval []ColumnInfo PKeyColumns []int } // Bind generates a new query object based on the query statement passed in. // The query is automatically prepared if it has not previously been executed. // The binding callback allows the application to define which query argument // values will be marshalled as part of the query execution. // During execution, the meta data of the prepared query will be routed to the // binding callback, which is responsible for producing the query argument values. func (s *Session) Bind(stmt string, b func(q *QueryInfo) ([]interface{}, error)) *Query { s.mu.RLock() qry := &Query{stmt: stmt, binding: b, cons: s.cons, session: s, pageSize: s.pageSize, trace: s.trace, prefetch: s.prefetch, rt: s.cfg.RetryPolicy} s.mu.RUnlock() return qry } // Close closes all connections. The session is unusable after this // operation. func (s *Session) Close() { s.closeMu.Lock() defer s.closeMu.Unlock() if s.isClosed { return } s.isClosed = true s.pool.Close() if s.hostSource != nil { close(s.hostSource.closeChan) } if s.control != nil { s.control.close() } } func (s *Session) Closed() bool { s.closeMu.RLock() closed := s.isClosed s.closeMu.RUnlock() return closed } func (s *Session) executeQuery(qry *Query) *Iter { // fail fast if s.Closed() { return &Iter{err: ErrSessionClosed} } var iter *Iter qry.attempts = 0 qry.totalLatency = 0 for { host, conn := s.pool.Pick(qry) //Assign the error unavailable to the iterator if conn == nil { if qry.rt == nil || !qry.rt.Attempt(qry) { iter = &Iter{err: ErrNoConnections} break } continue } t := time.Now() iter = conn.executeQuery(qry) qry.totalLatency += time.Now().Sub(t).Nanoseconds() qry.attempts++ //Exit for loop if the query was successful if iter.err == nil { host.Mark(iter.err) break } // Mark host as ok host.Mark(nil) if qry.rt == nil || !qry.rt.Attempt(qry) { break } } return iter } // KeyspaceMetadata returns the schema metadata for the keyspace specified. func (s *Session) KeyspaceMetadata(keyspace string) (*KeyspaceMetadata, error) { // fail fast if s.Closed() { return nil, ErrSessionClosed } if keyspace == "" { return nil, ErrNoKeyspace } s.mu.Lock() // lazy-init schemaDescriber if s.schemaDescriber == nil { s.schemaDescriber = newSchemaDescriber(s) } s.mu.Unlock() return s.schemaDescriber.getSchema(keyspace) } // returns routing key indexes and type info func (s *Session) routingKeyInfo(stmt string) (*routingKeyInfo, error) { s.routingKeyInfoCache.mu.Lock() entry, cached := s.routingKeyInfoCache.lru.Get(stmt) if cached { // done accessing the cache s.routingKeyInfoCache.mu.Unlock() // the entry is an inflight struct similiar to that used by // Conn to prepare statements inflight := entry.(*inflightCachedEntry) // wait for any inflight work inflight.wg.Wait() if inflight.err != nil { return nil, inflight.err } key, _ := inflight.value.(*routingKeyInfo) return key, nil } // create a new inflight entry while the data is created inflight := new(inflightCachedEntry) inflight.wg.Add(1) defer inflight.wg.Done() s.routingKeyInfoCache.lru.Add(stmt, inflight) s.routingKeyInfoCache.mu.Unlock() var ( info *QueryInfo partitionKey []*ColumnMetadata ) // get the query info for the statement host, conn := s.pool.Pick(nil) if conn == nil { // no connections inflight.err = ErrNoConnections // don't cache this error s.routingKeyInfoCache.Remove(stmt) return nil, inflight.err } info, inflight.err = conn.prepareStatement(stmt, nil) if inflight.err != nil { // don't cache this error s.routingKeyInfoCache.Remove(stmt) host.Mark(inflight.err) return nil, inflight.err } // Mark host as OK host.Mark(nil) if len(info.Args) == 0 { // no arguments, no routing key, and no error return nil, nil } // get the table metadata table := info.Args[0].Table var keyspaceMetadata *KeyspaceMetadata keyspaceMetadata, inflight.err = s.KeyspaceMetadata(s.cfg.Keyspace) if inflight.err != nil { // don't cache this error s.routingKeyInfoCache.Remove(stmt) return nil, inflight.err } tableMetadata, found := keyspaceMetadata.Tables[table] if !found { // unlikely that the statement could be prepared and the metadata for // the table couldn't be found, but this may indicate either a bug // in the metadata code, or that the table was just dropped. inflight.err = ErrNoMetadata // don't cache this error s.routingKeyInfoCache.Remove(stmt) return nil, inflight.err } partitionKey = tableMetadata.PartitionKey size := len(partitionKey) routingKeyInfo := &routingKeyInfo{ indexes: make([]int, size), types: make([]TypeInfo, size), } for keyIndex, keyColumn := range partitionKey { // set an indicator for checking if the mapping is missing routingKeyInfo.indexes[keyIndex] = -1 // find the column in the query info for argIndex, boundColumn := range info.Args { if keyColumn.Name == boundColumn.Name { // there may be many such bound columns, pick the first routingKeyInfo.indexes[keyIndex] = argIndex routingKeyInfo.types[keyIndex] = boundColumn.TypeInfo break } } if routingKeyInfo.indexes[keyIndex] == -1 { // missing a routing key column mapping // no routing key, and no error return nil, nil } } // cache this result inflight.value = routingKeyInfo return routingKeyInfo, nil } func (s *Session) executeBatch(batch *Batch) (*Iter, error) { // fail fast if s.Closed() { return nil, ErrSessionClosed } // Prevent the execution of the batch if greater than the limit // Currently batches have a limit of 65536 queries. // https://datastax-oss.atlassian.net/browse/JAVA-229 if batch.Size() > BatchSizeMaximum { return nil, ErrTooManyStmts } var err error var iter *Iter batch.attempts = 0 batch.totalLatency = 0 for { host, conn := s.pool.Pick(nil) //Assign the error unavailable and break loop if conn == nil { err = ErrNoConnections break } t := time.Now() iter, err = conn.executeBatch(batch) batch.totalLatency += time.Now().Sub(t).Nanoseconds() batch.attempts++ //Exit loop if operation executed correctly if err == nil { host.Mark(err) return iter, err } // Mark host as OK host.Mark(nil) if batch.rt == nil || !batch.rt.Attempt(batch) { break } } return nil, err } // ExecuteBatch executes a batch operation and returns nil if successful // otherwise an error is returned describing the failure. func (s *Session) ExecuteBatch(batch *Batch) error { _, err := s.executeBatch(batch) return err } // ExecuteBatchCAS executes a batch operation and returns nil if successful and // an iterator (to scan aditional rows if more than one conditional statement) // was sent, otherwise an error is returned describing the failure. // Further scans on the interator must also remember to include // the applied boolean as the first argument to *Iter.Scan func (s *Session) ExecuteBatchCAS(batch *Batch, dest ...interface{}) (applied bool, iter *Iter, err error) { if iter, err := s.executeBatch(batch); err == nil { if err := iter.checkErrAndNotFound(); err != nil { return false, nil, err } if len(iter.Columns()) > 1 { dest = append([]interface{}{&applied}, dest...) iter.Scan(dest...) } else { iter.Scan(&applied) } return applied, iter, nil } else { return false, nil, err } } // MapExecuteBatchCAS executes a batch operation much like ExecuteBatchCAS, // however it accepts a map rather than a list of arguments for the initial // scan. func (s *Session) MapExecuteBatchCAS(batch *Batch, dest map[string]interface{}) (applied bool, iter *Iter, err error) { if iter, err := s.executeBatch(batch); err == nil { if err := iter.checkErrAndNotFound(); err != nil { return false, nil, err } iter.MapScan(dest) applied = dest["[applied]"].(bool) delete(dest, "[applied]") // we usually close here, but instead of closing, just returin an error // if MapScan failed. Although Close just returns err, using Close // here might be confusing as we are not actually closing the iter return applied, iter, iter.err } else { return false, nil, err } } // Query represents a CQL statement that can be executed. type Query struct { stmt string values []interface{} cons Consistency pageSize int routingKey []byte routingKeyBuffer []byte pageState []byte prefetch float64 trace Tracer session *Session rt RetryPolicy binding func(q *QueryInfo) ([]interface{}, error) attempts int totalLatency int64 serialCons SerialConsistency defaultTimestamp bool disableAutoPage bool } // String implements the stringer interface. func (q Query) String() string { return fmt.Sprintf("[query statement=%q values=%+v consistency=%s]", q.stmt, q.values, q.cons) } //Attempts returns the number of times the query was executed. func (q *Query) Attempts() int { return q.attempts } //Latency returns the average amount of nanoseconds per attempt of the query. func (q *Query) Latency() int64 { if q.attempts > 0 { return q.totalLatency / int64(q.attempts) } return 0 } // Consistency sets the consistency level for this query. If no consistency // level have been set, the default consistency level of the cluster // is used. func (q *Query) Consistency(c Consistency) *Query { q.cons = c return q } // GetConsistency returns the currently configured consistency level for // the query. func (q *Query) GetConsistency() Consistency { return q.cons } // Trace enables tracing of this query. Look at the documentation of the // Tracer interface to learn more about tracing. func (q *Query) Trace(trace Tracer) *Query { q.trace = trace return q } // PageSize will tell the iterator to fetch the result in pages of size n. // This is useful for iterating over large result sets, but setting the // page size to low might decrease the performance. This feature is only // available in Cassandra 2 and onwards. func (q *Query) PageSize(n int) *Query { q.pageSize = n return q } // DefaultTimestamp will enable the with default timestamp flag on the query. // If enable, this will replace the server side assigned // timestamp as default timestamp. Note that a timestamp in the query itself // will still override this timestamp. This is entirely optional. // // Only available on protocol >= 3 func (q *Query) DefaultTimestamp(enable bool) *Query { q.defaultTimestamp = enable return q } // RoutingKey sets the routing key to use when a token aware connection // pool is used to optimize the routing of this query. func (q *Query) RoutingKey(routingKey []byte) *Query { q.routingKey = routingKey return q } // GetRoutingKey gets the routing key to use for routing this query. If // a routing key has not been explicitly set, then the routing key will // be constructed if possible using the keyspace's schema and the query // info for this query statement. If the routing key cannot be determined // then nil will be returned with no error. On any error condition, // an error description will be returned. func (q *Query) GetRoutingKey() ([]byte, error) { if q.routingKey != nil { return q.routingKey, nil } // try to determine the routing key routingKeyInfo, err := q.session.routingKeyInfo(q.stmt) if err != nil { return nil, err } if routingKeyInfo == nil { return nil, nil } if len(routingKeyInfo.indexes) == 1 { // single column routing key routingKey, err := Marshal( routingKeyInfo.types[0], q.values[routingKeyInfo.indexes[0]], ) if err != nil { return nil, err } return routingKey, nil } // We allocate that buffer only once, so that further re-bind/exec of the // same query don't allocate more memory. if q.routingKeyBuffer == nil { q.routingKeyBuffer = make([]byte, 0, 256) } // composite routing key buf := bytes.NewBuffer(q.routingKeyBuffer) for i := range routingKeyInfo.indexes { encoded, err := Marshal( routingKeyInfo.types[i], q.values[routingKeyInfo.indexes[i]], ) if err != nil { return nil, err } lenBuf := []byte{0x00, 0x00} binary.BigEndian.PutUint16(lenBuf, uint16(len(encoded))) buf.Write(lenBuf) buf.Write(encoded) buf.WriteByte(0x00) } routingKey := buf.Bytes() return routingKey, nil } func (q *Query) shouldPrepare() bool { stmt := strings.TrimLeftFunc(strings.TrimRightFunc(q.stmt, func(r rune) bool { return unicode.IsSpace(r) || r == ';' }), unicode.IsSpace) var stmtType string if n := strings.IndexFunc(stmt, unicode.IsSpace); n >= 0 { stmtType = strings.ToLower(stmt[:n]) } if stmtType == "begin" { if n := strings.LastIndexFunc(stmt, unicode.IsSpace); n >= 0 { stmtType = strings.ToLower(stmt[n+1:]) } } switch stmtType { case "select", "insert", "update", "delete", "batch": return true } return false } // SetPrefetch sets the default threshold for pre-fetching new pages. If // there are only p*pageSize rows remaining, the next page will be requested // automatically. func (q *Query) Prefetch(p float64) *Query { q.prefetch = p return q } // RetryPolicy sets the policy to use when retrying the query. func (q *Query) RetryPolicy(r RetryPolicy) *Query { q.rt = r return q } // Bind sets query arguments of query. This can also be used to rebind new query arguments // to an existing query instance. func (q *Query) Bind(v ...interface{}) *Query { q.values = v return q } // SerialConsistency sets the consistencyc level for the // serial phase of conditional updates. That consitency can only be // either SERIAL or LOCAL_SERIAL and if not present, it defaults to // SERIAL. This option will be ignored for anything else that a // conditional update/insert. func (q *Query) SerialConsistency(cons SerialConsistency) *Query { q.serialCons = cons return q } // PageState sets the paging state for the query to resume paging from a specific // point in time. Setting this will disable to query paging for this query, and // must be used for all subsequent pages. func (q *Query) PageState(state []byte) *Query { q.pageState = state q.disableAutoPage = true return q } // Exec executes the query without returning any rows. func (q *Query) Exec() error { iter := q.Iter() return iter.err } func isUseStatement(stmt string) bool { if len(stmt) < 3 { return false } return strings.ToLower(stmt[0:3]) == "use" } // Iter executes the query and returns an iterator capable of iterating // over all results. func (q *Query) Iter() *Iter { if isUseStatement(q.stmt) { return &Iter{err: ErrUseStmt} } return q.session.executeQuery(q) } // MapScan executes the query, copies the columns of the first selected // row into the map pointed at by m and discards the rest. If no rows // were selected, ErrNotFound is returned. func (q *Query) MapScan(m map[string]interface{}) error { iter := q.Iter() if err := iter.checkErrAndNotFound(); err != nil { return err } iter.MapScan(m) return iter.Close() } // Scan executes the query, copies the columns of the first selected // row into the values pointed at by dest and discards the rest. If no rows // were selected, ErrNotFound is returned. func (q *Query) Scan(dest ...interface{}) error { iter := q.Iter() if err := iter.checkErrAndNotFound(); err != nil { return err } iter.Scan(dest...) return iter.Close() } // ScanCAS executes a lightweight transaction (i.e. an UPDATE or INSERT // statement containing an IF clause). If the transaction fails because // the existing values did not match, the previous values will be stored // in dest. func (q *Query) ScanCAS(dest ...interface{}) (applied bool, err error) { iter := q.Iter() if err := iter.checkErrAndNotFound(); err != nil { return false, err } if len(iter.Columns()) > 1 { dest = append([]interface{}{&applied}, dest...) iter.Scan(dest...) } else { iter.Scan(&applied) } return applied, iter.Close() } // MapScanCAS executes a lightweight transaction (i.e. an UPDATE or INSERT // statement containing an IF clause). If the transaction fails because // the existing values did not match, the previous values will be stored // in dest map. // // As for INSERT .. IF NOT EXISTS, previous values will be returned as if // SELECT * FROM. So using ScanCAS with INSERT is inherently prone to // column mismatching. MapScanCAS is added to capture them safely. func (q *Query) MapScanCAS(dest map[string]interface{}) (applied bool, err error) { iter := q.Iter() if err := iter.checkErrAndNotFound(); err != nil { return false, err } iter.MapScan(dest) applied = dest["[applied]"].(bool) delete(dest, "[applied]") return applied, iter.Close() } // Iter represents an iterator that can be used to iterate over all rows that // were returned by a query. The iterator might send additional queries to the // database during the iteration if paging was enabled. type Iter struct { err error pos int rows [][][]byte meta resultMetadata next *nextIter framer *framer once sync.Once } // Columns returns the name and type of the selected columns. func (iter *Iter) Columns() []ColumnInfo { return iter.meta.columns } // Scan consumes the next row of the iterator and copies the columns of the // current row into the values pointed at by dest. Use nil as a dest value // to skip the corresponding column. Scan might send additional queries // to the database to retrieve the next set of rows if paging was enabled. // // Scan returns true if the row was successfully unmarshaled or false if the // end of the result set was reached or if an error occurred. Close should // be called afterwards to retrieve any potential errors. func (iter *Iter) Scan(dest ...interface{}) bool { if iter.err != nil { return false } if iter.pos >= len(iter.rows) { if iter.next != nil { *iter = *iter.next.fetch() return iter.Scan(dest...) } return false } if iter.next != nil && iter.pos == iter.next.pos { go iter.next.fetch() } // currently only support scanning into an expand tuple, such that its the same // as scanning in more values from a single column if len(dest) != iter.meta.actualColCount { iter.err = errors.New("count mismatch") return false } // i is the current position in dest, could posible replace it and just use // slices of dest i := 0 for c, col := range iter.meta.columns { if dest[i] == nil { i++ continue } switch col.TypeInfo.Type() { case TypeTuple: // this will panic, actually a bug, please report tuple := col.TypeInfo.(TupleTypeInfo) count := len(tuple.Elems) // here we pass in a slice of the struct which has the number number of // values as elements in the tuple iter.err = Unmarshal(col.TypeInfo, iter.rows[iter.pos][c], dest[i:i+count]) i += count default: iter.err = Unmarshal(col.TypeInfo, iter.rows[iter.pos][c], dest[i]) i++ } if iter.err != nil { return false } } iter.pos++ return true } // Close closes the iterator and returns any errors that happened during // the query or the iteration. func (iter *Iter) Close() error { iter.once.Do(func() { if iter.framer != nil { framerPool.Put(iter.framer) iter.framer = nil } }) return iter.err } // WillSwitchPage detects if iterator reached end of current page // and the next page is available. func (iter *Iter) WillSwitchPage() bool { return iter.pos >= len(iter.rows) && iter.next != nil } // checkErrAndNotFound handle error and NotFound in one method. func (iter *Iter) checkErrAndNotFound() error { if iter.err != nil { return iter.err } else if len(iter.rows) == 0 { return ErrNotFound } return nil } // PageState return the current paging state for a query which can be used for // subsequent quries to resume paging this point. func (iter *Iter) PageState() []byte { return iter.meta.pagingState } type nextIter struct { qry Query pos int once sync.Once next *Iter } func (n *nextIter) fetch() *Iter { n.once.Do(func() { n.next = n.qry.session.executeQuery(&n.qry) }) return n.next } type Batch struct { Type BatchType Entries []BatchEntry Cons Consistency rt RetryPolicy attempts int totalLatency int64 serialCons SerialConsistency defaultTimestamp bool } // NewBatch creates a new batch operation without defaults from the cluster func NewBatch(typ BatchType) *Batch { return &Batch{Type: typ} } // NewBatch creates a new batch operation using defaults defined in the cluster func (s *Session) NewBatch(typ BatchType) *Batch { s.mu.RLock() batch := &Batch{Type: typ, rt: s.cfg.RetryPolicy, serialCons: s.cfg.SerialConsistency, Cons: s.cons, defaultTimestamp: s.cfg.DefaultTimestamp} s.mu.RUnlock() return batch } // Attempts returns the number of attempts made to execute the batch. func (b *Batch) Attempts() int { return b.attempts } //Latency returns the average number of nanoseconds to execute a single attempt of the batch. func (b *Batch) Latency() int64 { if b.attempts > 0 { return b.totalLatency / int64(b.attempts) } return 0 } // GetConsistency returns the currently configured consistency level for the batch // operation. func (b *Batch) GetConsistency() Consistency { return b.Cons } // Query adds the query to the batch operation func (b *Batch) Query(stmt string, args ...interface{}) { b.Entries = append(b.Entries, BatchEntry{Stmt: stmt, Args: args}) } // Bind adds the query to the batch operation and correlates it with a binding callback // that will be invoked when the batch is executed. The binding callback allows the application // to define which query argument values will be marshalled as part of the batch execution. func (b *Batch) Bind(stmt string, bind func(q *QueryInfo) ([]interface{}, error)) { b.Entries = append(b.Entries, BatchEntry{Stmt: stmt, binding: bind}) } // RetryPolicy sets the retry policy to use when executing the batch operation func (b *Batch) RetryPolicy(r RetryPolicy) *Batch { b.rt = r return b } // Size returns the number of batch statements to be executed by the batch operation. func (b *Batch) Size() int { return len(b.Entries) } // SerialConsistency sets the consistencyc level for the // serial phase of conditional updates. That consitency can only be // either SERIAL or LOCAL_SERIAL and if not present, it defaults to // SERIAL. This option will be ignored for anything else that a // conditional update/insert. // // Only available for protocol 3 and above func (b *Batch) SerialConsistency(cons SerialConsistency) *Batch { b.serialCons = cons return b } // DefaultTimestamp will enable the with default timestamp flag on the query. // If enable, this will replace the server side assigned // timestamp as default timestamp. Note that a timestamp in the query itself // will still override this timestamp. This is entirely optional. // // Only available on protocol >= 3 func (b *Batch) DefaultTimestamp(enable bool) *Batch { b.defaultTimestamp = enable return b } type BatchType byte const ( LoggedBatch BatchType = 0 UnloggedBatch BatchType = 1 CounterBatch BatchType = 2 ) type BatchEntry struct { Stmt string Args []interface{} binding func(q *QueryInfo) ([]interface{}, error) } type ColumnInfo struct { Keyspace string Table string Name string TypeInfo TypeInfo } func (c ColumnInfo) String() string { return fmt.Sprintf("[column keyspace=%s table=%s name=%s type=%v]", c.Keyspace, c.Table, c.Name, c.TypeInfo) } // routing key indexes LRU cache type routingKeyInfoLRU struct { lru *lru.Cache mu sync.Mutex } type routingKeyInfo struct { indexes []int types []TypeInfo } func (r *routingKeyInfoLRU) Remove(key string) { r.mu.Lock() r.lru.Remove(key) r.mu.Unlock() } //Max adjusts the maximum size of the cache and cleans up the oldest records if //the new max is lower than the previous value. Not concurrency safe. func (r *routingKeyInfoLRU) Max(max int) { r.mu.Lock() for r.lru.Len() > max { r.lru.RemoveOldest() } r.lru.MaxEntries = max r.mu.Unlock() } type inflightCachedEntry struct { wg sync.WaitGroup err error value interface{} } // Tracer is the interface implemented by query tracers. Tracers have the // ability to obtain a detailed event log of all events that happened during // the execution of a query from Cassandra. Gathering this information might // be essential for debugging and optimizing queries, but this feature should // not be used on production systems with very high load. type Tracer interface { Trace(traceId []byte) } type traceWriter struct { session *Session w io.Writer mu sync.Mutex } // NewTraceWriter returns a simple Tracer implementation that outputs // the event log in a textual format. func NewTraceWriter(session *Session, w io.Writer) Tracer { return &traceWriter{session: session, w: w} } func (t *traceWriter) Trace(traceId []byte) { var ( coordinator string duration int ) iter := t.session.control.query(`SELECT coordinator, duration FROM system_traces.sessions WHERE session_id = ?`, traceId) iter.Scan(&coordinator, &duration) if err := iter.Close(); err != nil { t.mu.Lock() fmt.Fprintln(t.w, "Error:", err) t.mu.Unlock() return } var ( timestamp time.Time activity string source string elapsed int ) fmt.Fprintf(t.w, "Tracing session %016x (coordinator: %s, duration: %v):\n", traceId, coordinator, time.Duration(duration)*time.Microsecond) t.mu.Lock() defer t.mu.Unlock() iter = t.session.control.query(`SELECT event_id, activity, source, source_elapsed FROM system_traces.events WHERE session_id = ?`, traceId) for iter.Scan(×tamp, &activity, &source, &elapsed) { fmt.Fprintf(t.w, "%s: %s (source: %s, elapsed: %d)\n", timestamp.Format("2006/01/02 15:04:05.999999"), activity, source, elapsed) } if err := iter.Close(); err != nil { fmt.Fprintln(t.w, "Error:", err) } } type Error struct { Code int Message string } func (e Error) Error() string { return e.Message } var ( ErrNotFound = errors.New("not found") ErrUnavailable = errors.New("unavailable") ErrUnsupported = errors.New("feature not supported") ErrTooManyStmts = errors.New("too many statements") ErrUseStmt = errors.New("use statements aren't supported. Please see https://github.com/gocql/gocql for explaination.") ErrSessionClosed = errors.New("session has been closed") ErrNoConnections = errors.New("no connections available") ErrNoKeyspace = errors.New("no keyspace provided") ErrNoMetadata = errors.New("no metadata available") ) type ErrProtocol struct{ error } func NewErrProtocol(format string, args ...interface{}) error { return ErrProtocol{fmt.Errorf(format, args...)} } // BatchSizeMaximum is the maximum number of statements a batch operation can have. // This limit is set by cassandra and could change in the future. const BatchSizeMaximum = 65535