/* Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved. The redistribution and use of this software (with or without changes) is allowed without the payment of fees or royalties provided that: source code distributions include the above copyright notice, this list of conditions and the following disclaimer; binary distributions include the above copyright notice, this list of conditions and the following disclaimer in their documentation. This software is provided 'as is' with no explicit or implied warranties in respect of its operation, including, but not limited to, correctness and fitness for purpose. --------------------------------------------------------------------------- Issue Date: 09/09/2014 */ #include "aes_ni.h" #if defined( USE_INTEL_AES_IF_PRESENT ) #if defined(_MSC_VER) #include #pragma intrinsic(__cpuid) #define INLINE __inline INLINE int has_aes_ni(void) { static int test = -1; if(test < 0) { int cpu_info[4]; __cpuid(cpu_info, 1); test = cpu_info[2] & 0x02000000; } return test; } #elif defined( __GNUC__ ) #include #if !defined(__clang__) #pragma GCC target ("ssse3") #pragma GCC target ("sse4.1") #pragma GCC target ("aes") #endif #include #define INLINE static __inline INLINE int has_aes_ni() { static int test = -1; if(test < 0) { unsigned int a, b, c, d; if(!__get_cpuid(1, &a, &b, &c, &d)) test = 0; else test = (c & 0x2000000); } return test; } #else #error AES New Instructions require Microsoft, Intel, GNU C, or CLANG #endif INLINE __m128i aes_128_assist(__m128i t1, __m128i t2) { __m128i t3; t2 = _mm_shuffle_epi32(t2, 0xff); t3 = _mm_slli_si128(t1, 0x4); t1 = _mm_xor_si128(t1, t3); t3 = _mm_slli_si128(t3, 0x4); t1 = _mm_xor_si128(t1, t3); t3 = _mm_slli_si128(t3, 0x4); t1 = _mm_xor_si128(t1, t3); t1 = _mm_xor_si128(t1, t2); return t1; } AES_RETURN aes_ni(encrypt_key128)(const unsigned char *key, aes_encrypt_ctx cx[1]) { __m128i t1, t2; __m128i *ks = (__m128i*)cx->ks; if(!has_aes_ni()) { return aes_xi(encrypt_key128)(key, cx); } t1 = _mm_loadu_si128((__m128i*)key); ks[0] = t1; t2 = _mm_aeskeygenassist_si128(t1, 0x1); t1 = aes_128_assist(t1, t2); ks[1] = t1; t2 = _mm_aeskeygenassist_si128(t1, 0x2); t1 = aes_128_assist(t1, t2); ks[2] = t1; t2 = _mm_aeskeygenassist_si128(t1, 0x4); t1 = aes_128_assist(t1, t2); ks[3] = t1; t2 = _mm_aeskeygenassist_si128(t1, 0x8); t1 = aes_128_assist(t1, t2); ks[4] = t1; t2 = _mm_aeskeygenassist_si128(t1, 0x10); t1 = aes_128_assist(t1, t2); ks[5] = t1; t2 = _mm_aeskeygenassist_si128(t1, 0x20); t1 = aes_128_assist(t1, t2); ks[6] = t1; t2 = _mm_aeskeygenassist_si128(t1, 0x40); t1 = aes_128_assist(t1, t2); ks[7] = t1; t2 = _mm_aeskeygenassist_si128(t1, 0x80); t1 = aes_128_assist(t1, t2); ks[8] = t1; t2 = _mm_aeskeygenassist_si128(t1, 0x1b); t1 = aes_128_assist(t1, t2); ks[9] = t1; t2 = _mm_aeskeygenassist_si128(t1, 0x36); t1 = aes_128_assist(t1, t2); ks[10] = t1; cx->inf.l = 0; cx->inf.b[0] = 10 * 16; return EXIT_SUCCESS; } INLINE void aes_192_assist(__m128i* t1, __m128i * t2, __m128i * t3) { __m128i t4; *t2 = _mm_shuffle_epi32(*t2, 0x55); t4 = _mm_slli_si128(*t1, 0x4); *t1 = _mm_xor_si128(*t1, t4); t4 = _mm_slli_si128(t4, 0x4); *t1 = _mm_xor_si128(*t1, t4); t4 = _mm_slli_si128(t4, 0x4); *t1 = _mm_xor_si128(*t1, t4); *t1 = _mm_xor_si128(*t1, *t2); *t2 = _mm_shuffle_epi32(*t1, 0xff); t4 = _mm_slli_si128(*t3, 0x4); *t3 = _mm_xor_si128(*t3, t4); *t3 = _mm_xor_si128(*t3, *t2); } AES_RETURN aes_ni(encrypt_key192)(const unsigned char *key, aes_encrypt_ctx cx[1]) { __m128i t1, t2, t3; __m128i *ks = (__m128i*)cx->ks; if(!has_aes_ni()) { return aes_xi(encrypt_key192)(key, cx); } t1 = _mm_loadu_si128((__m128i*)key); t3 = _mm_loadu_si128((__m128i*)(key + 16)); ks[0] = t1; ks[1] = t3; t2 = _mm_aeskeygenassist_si128(t3, 0x1); aes_192_assist(&t1, &t2, &t3); ks[1] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(ks[1]), _mm_castsi128_pd(t1), 0)); ks[2] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(t1), _mm_castsi128_pd(t3), 1)); t2 = _mm_aeskeygenassist_si128(t3, 0x2); aes_192_assist(&t1, &t2, &t3); ks[3] = t1; ks[4] = t3; t2 = _mm_aeskeygenassist_si128(t3, 0x4); aes_192_assist(&t1, &t2, &t3); ks[4] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(ks[4]), _mm_castsi128_pd(t1), 0)); ks[5] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(t1), _mm_castsi128_pd(t3), 1)); t2 = _mm_aeskeygenassist_si128(t3, 0x8); aes_192_assist(&t1, &t2, &t3); ks[6] = t1; ks[7] = t3; t2 = _mm_aeskeygenassist_si128(t3, 0x10); aes_192_assist(&t1, &t2, &t3); ks[7] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(ks[7]), _mm_castsi128_pd(t1), 0)); ks[8] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(t1), _mm_castsi128_pd(t3), 1)); t2 = _mm_aeskeygenassist_si128(t3, 0x20); aes_192_assist(&t1, &t2, &t3); ks[9] = t1; ks[10] = t3; t2 = _mm_aeskeygenassist_si128(t3, 0x40); aes_192_assist(&t1, &t2, &t3); ks[10] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(ks[10]), _mm_castsi128_pd(t1), 0)); ks[11] = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(t1), _mm_castsi128_pd(t3), 1)); t2 = _mm_aeskeygenassist_si128(t3, 0x80); aes_192_assist(&t1, &t2, &t3); ks[12] = t1; cx->inf.l = 0; cx->inf.b[0] = 12 * 16; return EXIT_SUCCESS; } INLINE void aes_256_assist1(__m128i* t1, __m128i * t2) { __m128i t4; *t2 = _mm_shuffle_epi32(*t2, 0xff); t4 = _mm_slli_si128(*t1, 0x4); *t1 = _mm_xor_si128(*t1, t4); t4 = _mm_slli_si128(t4, 0x4); *t1 = _mm_xor_si128(*t1, t4); t4 = _mm_slli_si128(t4, 0x4); *t1 = _mm_xor_si128(*t1, t4); *t1 = _mm_xor_si128(*t1, *t2); } INLINE void aes_256_assist2(__m128i* t1, __m128i * t3) { __m128i t2, t4; t4 = _mm_aeskeygenassist_si128(*t1, 0x0); t2 = _mm_shuffle_epi32(t4, 0xaa); t4 = _mm_slli_si128(*t3, 0x4); *t3 = _mm_xor_si128(*t3, t4); t4 = _mm_slli_si128(t4, 0x4); *t3 = _mm_xor_si128(*t3, t4); t4 = _mm_slli_si128(t4, 0x4); *t3 = _mm_xor_si128(*t3, t4); *t3 = _mm_xor_si128(*t3, t2); } AES_RETURN aes_ni(encrypt_key256)(const unsigned char *key, aes_encrypt_ctx cx[1]) { __m128i t1, t2, t3; __m128i *ks = (__m128i*)cx->ks; if(!has_aes_ni()) { return aes_xi(encrypt_key256)(key, cx); } t1 = _mm_loadu_si128((__m128i*)key); t3 = _mm_loadu_si128((__m128i*)(key + 16)); ks[0] = t1; ks[1] = t3; t2 = _mm_aeskeygenassist_si128(t3, 0x01); aes_256_assist1(&t1, &t2); ks[2] = t1; aes_256_assist2(&t1, &t3); ks[3] = t3; t2 = _mm_aeskeygenassist_si128(t3, 0x02); aes_256_assist1(&t1, &t2); ks[4] = t1; aes_256_assist2(&t1, &t3); ks[5] = t3; t2 = _mm_aeskeygenassist_si128(t3, 0x04); aes_256_assist1(&t1, &t2); ks[6] = t1; aes_256_assist2(&t1, &t3); ks[7] = t3; t2 = _mm_aeskeygenassist_si128(t3, 0x08); aes_256_assist1(&t1, &t2); ks[8] = t1; aes_256_assist2(&t1, &t3); ks[9] = t3; t2 = _mm_aeskeygenassist_si128(t3, 0x10); aes_256_assist1(&t1, &t2); ks[10] = t1; aes_256_assist2(&t1, &t3); ks[11] = t3; t2 = _mm_aeskeygenassist_si128(t3, 0x20); aes_256_assist1(&t1, &t2); ks[12] = t1; aes_256_assist2(&t1, &t3); ks[13] = t3; t2 = _mm_aeskeygenassist_si128(t3, 0x40); aes_256_assist1(&t1, &t2); ks[14] = t1; cx->inf.l = 0; cx->inf.b[0] = 14 * 16; return EXIT_SUCCESS; } INLINE void enc_to_dec(aes_decrypt_ctx cx[1]) { __m128i *ks = (__m128i*)cx->ks; int j; for( j = 1 ; j < (cx->inf.b[0] >> 4) ; ++j ) ks[j] = _mm_aesimc_si128(ks[j]); } AES_RETURN aes_ni(decrypt_key128)(const unsigned char *key, aes_decrypt_ctx cx[1]) { if(!has_aes_ni()) { return aes_xi(decrypt_key128)(key, cx); } if(aes_ni(encrypt_key128)(key, (aes_encrypt_ctx*)cx) == EXIT_SUCCESS) { enc_to_dec(cx); return EXIT_SUCCESS; } else return EXIT_FAILURE; } AES_RETURN aes_ni(decrypt_key192)(const unsigned char *key, aes_decrypt_ctx cx[1]) { if(!has_aes_ni()) { return aes_xi(decrypt_key192)(key, cx); } if(aes_ni(encrypt_key192)(key, (aes_encrypt_ctx*)cx) == EXIT_SUCCESS) { enc_to_dec(cx); return EXIT_SUCCESS; } else return EXIT_FAILURE; } AES_RETURN aes_ni(decrypt_key256)(const unsigned char *key, aes_decrypt_ctx cx[1]) { if(!has_aes_ni()) { return aes_xi(decrypt_key256)(key, cx); } if(aes_ni(encrypt_key256)(key, (aes_encrypt_ctx*)cx) == EXIT_SUCCESS) { enc_to_dec(cx); return EXIT_SUCCESS; } else return EXIT_FAILURE; } AES_RETURN aes_ni(encrypt)(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1]) { __m128i *key = (__m128i*)cx->ks, t; if(cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16) return EXIT_FAILURE; if(!has_aes_ni()) { return aes_xi(encrypt)(in, out, cx); } t = _mm_xor_si128(_mm_loadu_si128((__m128i*)in), *(__m128i*)key); switch(cx->inf.b[0]) { case 14 * 16: t = _mm_aesenc_si128(t, *(__m128i*)++key); t = _mm_aesenc_si128(t, *(__m128i*)++key); case 12 * 16: t = _mm_aesenc_si128(t, *(__m128i*)++key); t = _mm_aesenc_si128(t, *(__m128i*)++key); case 10 * 16: t = _mm_aesenc_si128(t, *(__m128i*)++key); t = _mm_aesenc_si128(t, *(__m128i*)++key); t = _mm_aesenc_si128(t, *(__m128i*)++key); t = _mm_aesenc_si128(t, *(__m128i*)++key); t = _mm_aesenc_si128(t, *(__m128i*)++key); t = _mm_aesenc_si128(t, *(__m128i*)++key); t = _mm_aesenc_si128(t, *(__m128i*)++key); t = _mm_aesenc_si128(t, *(__m128i*)++key); t = _mm_aesenc_si128(t, *(__m128i*)++key); t = _mm_aesenclast_si128(t, *(__m128i*)++key); } _mm_storeu_si128(&((__m128i*)out)[0], t); return EXIT_SUCCESS; } AES_RETURN aes_ni(decrypt)(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1]) { __m128i *key = (__m128i*)cx->ks + (cx->inf.b[0] >> 4), t; if(cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16) return EXIT_FAILURE; if(!has_aes_ni()) { return aes_xi(decrypt)(in, out, cx); } t = _mm_xor_si128(_mm_loadu_si128((__m128i*)in), *(__m128i*)key); switch(cx->inf.b[0]) { case 14 * 16: t = _mm_aesdec_si128(t, *(__m128i*)--key); t = _mm_aesdec_si128(t, *(__m128i*)--key); case 12 * 16: t = _mm_aesdec_si128(t, *(__m128i*)--key); t = _mm_aesdec_si128(t, *(__m128i*)--key); case 10 * 16: t = _mm_aesdec_si128(t, *(__m128i*)--key); t = _mm_aesdec_si128(t, *(__m128i*)--key); t = _mm_aesdec_si128(t, *(__m128i*)--key); t = _mm_aesdec_si128(t, *(__m128i*)--key); t = _mm_aesdec_si128(t, *(__m128i*)--key); t = _mm_aesdec_si128(t, *(__m128i*)--key); t = _mm_aesdec_si128(t, *(__m128i*)--key); t = _mm_aesdec_si128(t, *(__m128i*)--key); t = _mm_aesdec_si128(t, *(__m128i*)--key); t = _mm_aesdeclast_si128(t, *(__m128i*)--key); } _mm_storeu_si128((__m128i*)out, t); return EXIT_SUCCESS; } #ifdef ADD_AESNI_MODE_CALLS #ifdef USE_AES_CONTEXT AES_RETURN aes_CBC_encrypt(const unsigned char *in, unsigned char *out, unsigned char ivec[16], unsigned long length, const aes_encrypt_ctx cx[1]) { __m128i feedback, data, *key = (__m128i*)cx->ks; int number_of_rounds = cx->inf.b[0] >> 4, j; unsigned long i; if(number_of_rounds != 10 && number_of_rounds != 12 && number_of_rounds != 14) return EXIT_FAILURE; if(!has_aes_ni()) { return aes_cbc_encrypt(in, out, length, ivec, cx); } if(length % 16) length = length / 16 + 1; else length /= 16; feedback = _mm_loadu_si128((__m128i*)ivec); for(i = 0; i < length; i++) { data = _mm_loadu_si128(&((__m128i*)in)[i]); feedback = _mm_xor_si128(data, feedback); feedback = _mm_xor_si128(feedback, ((__m128i*)key)[0]); for(j = 1; j ks; int number_of_rounds = cx->inf.b[0] >> 4, j; unsigned long i; if(number_of_rounds != 10 && number_of_rounds != 12 && number_of_rounds != 14) return EXIT_FAILURE; if(!has_aes_ni()) { return aes_cbc_decrypt(in, out, length, ivec, cx); } if(length % 16) length = length / 16 + 1; else length /= 16; feedback = _mm_loadu_si128((__m128i*)ivec); for(i = 0; i < length; i++) { last_in = _mm_loadu_si128(&((__m128i*)in)[i]); data = _mm_xor_si128(last_in, ((__m128i*)key)[number_of_rounds]); for(j = number_of_rounds - 1; j > 0; j--) { data = _mm_aesdec_si128(data, ((__m128i*)key)[j]); } data = _mm_aesdeclast_si128(data, ((__m128i*)key)[0]); data = _mm_xor_si128(data, feedback); _mm_storeu_si128(&((__m128i*)out)[i], data); feedback = last_in; } return EXIT_SUCCESS; } static void ctr_inc(unsigned char *ctr_blk) { uint32_t c; c = *(uint32_t*)(ctr_blk + 8); c++; *(uint32_t*)(ctr_blk + 8) = c; if(!c) *(uint32_t*)(ctr_blk + 12) = *(uint32_t*)(ctr_blk + 12) + 1; } AES_RETURN AES_CTR_encrypt(const unsigned char *in, unsigned char *out, const unsigned char ivec[8], const unsigned char nonce[4], unsigned long length, const aes_encrypt_ctx cx[1]) { __m128i ctr_block = { 0 }, *key = (__m128i*)cx->ks, tmp, ONE, BSWAP_EPI64; int number_of_rounds = cx->inf.b[0] >> 4, j; unsigned long i; if(number_of_rounds != 10 && number_of_rounds != 12 && number_of_rounds != 14) return EXIT_FAILURE; if(!has_aes_ni()) { unsigned char ctr_blk[16]; *(uint64_t*)ctr_blk = *(uint64_t*)ivec; *(uint32_t*)(ctr_blk + 8) = *(uint32_t*)nonce; return aes_ctr_crypt(in, out, length, (unsigned char*)ctr_blk, ctr_inc, cx); } if(length % 16) length = length / 16 + 1; else length /= 16; ONE = _mm_set_epi32(0, 1, 0, 0); BSWAP_EPI64 = _mm_setr_epi8(7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8); #ifdef _MSC_VER ctr_block = _mm_insert_epi64(ctr_block, *(long long*)ivec, 1); #else ctr_block = _mm_set_epi64(*(__m64*)ivec, *(__m64*)&ctr_block); #endif ctr_block = _mm_insert_epi32(ctr_block, *(long*)nonce, 1); ctr_block = _mm_srli_si128(ctr_block, 4); ctr_block = _mm_shuffle_epi8(ctr_block, BSWAP_EPI64); ctr_block = _mm_add_epi64(ctr_block, ONE); for(i = 0; i < length; i++) { tmp = _mm_shuffle_epi8(ctr_block, BSWAP_EPI64); ctr_block = _mm_add_epi64(ctr_block, ONE); tmp = _mm_xor_si128(tmp, ((__m128i*)key)[0]); for(j = 1; j